Alexandroff–Bakelman–Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations
نویسندگان
چکیده
منابع مشابه
Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations
In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate or singular when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of suc...
متن کاملAlexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations
In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or BellmanIsaacs equations from stochastic control problems. We establish an AlexandroffBakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of such degenerate e...
متن کاملBoundary Harnack principle and elliptic Harnack inequality
We prove a scale-invariant boundary Harnack principle for inner uniform domains over a large family of Dirichlet spaces. A novel feature of our work is that our assumptions are robust to time changes of the corresponding diffusions. In particular, we do not assume volume doubling property for the symmetric measure.
متن کاملDuality Principles for Fully Non- linear Elliptic Equations
In this paper we use duality theory to associate certain measures to fully-nonlinear elliptic equations. These measures are the natural extension of the Mather measures to controlled stochastic processes and associated second-order elliptic equations. We apply these ideas to prove new a-priori estimates for smooth solutions of fully nonlinear elliptic equations. Supported in part by FCT/POCTI/F...
متن کاملStability of Elliptic Harnack inequality
We prove that the elliptic Harnack inequality (on a manifold, graph, or suitably regular metric measure space) is stable under bounded perturbations, as well as rough isometries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2011
ISSN: 0022-0396
DOI: 10.1016/j.jde.2010.07.005